3.63 \(\int \frac{1}{\sqrt{x} (a+b \text{csch}(c+d \sqrt{x}))} \, dx\)

Optimal. Leaf size=63 \[ \frac{4 b \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}+\frac{2 \sqrt{x}}{a} \]

[Out]

(2*Sqrt[x])/a + (4*b*ArcTanh[(a - b*Tanh[(c + d*Sqrt[x])/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0950436, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {5437, 3783, 2660, 618, 204} \[ \frac{4 b \tanh ^{-1}\left (\frac{a-b \tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )}{\sqrt{a^2+b^2}}\right )}{a d \sqrt{a^2+b^2}}+\frac{2 \sqrt{x}}{a} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*(a + b*Csch[c + d*Sqrt[x]])),x]

[Out]

(2*Sqrt[x])/a + (4*b*ArcTanh[(a - b*Tanh[(c + d*Sqrt[x])/2])/Sqrt[a^2 + b^2]])/(a*Sqrt[a^2 + b^2]*d)

Rule 5437

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplif
y[(m + 1)/n], 0] && IntegerQ[p]

Rule 3783

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Dist[1/a, Int[1/(1 + (a*Sin[c + d
*x])/b), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{x} \left (a+b \text{csch}\left (c+d \sqrt{x}\right )\right )} \, dx &=2 \operatorname{Subst}\left (\int \frac{1}{a+b \text{csch}(c+d x)} \, dx,x,\sqrt{x}\right )\\ &=\frac{2 \sqrt{x}}{a}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{1+\frac{a \sinh (c+d x)}{b}} \, dx,x,\sqrt{x}\right )}{a}\\ &=\frac{2 \sqrt{x}}{a}+\frac{(4 i) \operatorname{Subst}\left (\int \frac{1}{1-\frac{2 i a x}{b}+x^2} \, dx,x,i \tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )\right )}{a d}\\ &=\frac{2 \sqrt{x}}{a}-\frac{(8 i) \operatorname{Subst}\left (\int \frac{1}{-4 \left (1+\frac{a^2}{b^2}\right )-x^2} \, dx,x,-\frac{2 i a}{b}+2 i \tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )\right )}{a d}\\ &=\frac{2 \sqrt{x}}{a}+\frac{4 b \tanh ^{-1}\left (\frac{b \left (\frac{a}{b}-\tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )\right )}{\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d}\\ \end{align*}

Mathematica [A]  time = 0.142376, size = 73, normalized size = 1.16 \[ \frac{2 \left (-\frac{2 b \tan ^{-1}\left (\frac{a-b \tanh \left (\frac{1}{2} \left (c+d \sqrt{x}\right )\right )}{\sqrt{-a^2-b^2}}\right )}{d \sqrt{-a^2-b^2}}+\frac{c}{d}+\sqrt{x}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*(a + b*Csch[c + d*Sqrt[x]])),x]

[Out]

(2*(c/d + Sqrt[x] - (2*b*ArcTan[(a - b*Tanh[(c + d*Sqrt[x])/2])/Sqrt[-a^2 - b^2]])/(Sqrt[-a^2 - b^2]*d)))/a

________________________________________________________________________________________

Maple [A]  time = 0.056, size = 94, normalized size = 1.5 \begin{align*} -4\,{\frac{b}{ad\sqrt{{a}^{2}+{b}^{2}}}{\it Artanh} \left ( 1/2\,{\frac{2\,b\tanh \left ( c/2+1/2\,d\sqrt{x} \right ) -2\,a}{\sqrt{{a}^{2}+{b}^{2}}}} \right ) }-2\,{\frac{\ln \left ( \tanh \left ( c/2+1/2\,d\sqrt{x} \right ) -1 \right ) }{ad}}+2\,{\frac{\ln \left ( \tanh \left ( c/2+1/2\,d\sqrt{x} \right ) +1 \right ) }{ad}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*csch(c+d*x^(1/2)))/x^(1/2),x)

[Out]

-4/d*b/a/(a^2+b^2)^(1/2)*arctanh(1/2*(2*b*tanh(1/2*c+1/2*d*x^(1/2))-2*a)/(a^2+b^2)^(1/2))-2/d/a*ln(tanh(1/2*c+
1/2*d*x^(1/2))-1)+2/d/a*ln(tanh(1/2*c+1/2*d*x^(1/2))+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*csch(c+d*x^(1/2)))/x^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.87965, size = 305, normalized size = 4.84 \begin{align*} \frac{2 \,{\left ({\left (a^{2} + b^{2}\right )} d \sqrt{x} + \sqrt{a^{2} + b^{2}} b \log \left (\frac{a b +{\left (a^{2} + b^{2} + \sqrt{a^{2} + b^{2}} b\right )} \cosh \left (d \sqrt{x} + c\right ) -{\left (b^{2} + \sqrt{a^{2} + b^{2}} b\right )} \sinh \left (d \sqrt{x} + c\right ) + \sqrt{a^{2} + b^{2}} a}{a \sinh \left (d \sqrt{x} + c\right ) + b}\right )\right )}}{{\left (a^{3} + a b^{2}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*csch(c+d*x^(1/2)))/x^(1/2),x, algorithm="fricas")

[Out]

2*((a^2 + b^2)*d*sqrt(x) + sqrt(a^2 + b^2)*b*log((a*b + (a^2 + b^2 + sqrt(a^2 + b^2)*b)*cosh(d*sqrt(x) + c) -
(b^2 + sqrt(a^2 + b^2)*b)*sinh(d*sqrt(x) + c) + sqrt(a^2 + b^2)*a)/(a*sinh(d*sqrt(x) + c) + b)))/((a^3 + a*b^2
)*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x} \left (a + b \operatorname{csch}{\left (c + d \sqrt{x} \right )}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*csch(c+d*x**(1/2)))/x**(1/2),x)

[Out]

Integral(1/(sqrt(x)*(a + b*csch(c + d*sqrt(x)))), x)

________________________________________________________________________________________

Giac [A]  time = 1.22405, size = 124, normalized size = 1.97 \begin{align*} -\frac{2 \, b \log \left (\frac{{\left | 2 \, a e^{\left (d \sqrt{x} + c\right )} + 2 \, b - 2 \, \sqrt{a^{2} + b^{2}} \right |}}{{\left | 2 \, a e^{\left (d \sqrt{x} + c\right )} + 2 \, b + 2 \, \sqrt{a^{2} + b^{2}} \right |}}\right )}{\sqrt{a^{2} + b^{2}} a d} + \frac{2 \,{\left (d \sqrt{x} + c\right )}}{a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*csch(c+d*x^(1/2)))/x^(1/2),x, algorithm="giac")

[Out]

-2*b*log(abs(2*a*e^(d*sqrt(x) + c) + 2*b - 2*sqrt(a^2 + b^2))/abs(2*a*e^(d*sqrt(x) + c) + 2*b + 2*sqrt(a^2 + b
^2)))/(sqrt(a^2 + b^2)*a*d) + 2*(d*sqrt(x) + c)/(a*d)